Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Earth System Science Data ; 13(10):4929-4950, 2021.
Article in English | ProQuest Central | ID: covidwho-1497684

ABSTRACT

A re-evaluated data set of nitrogen dioxide (NO2) column densities over Rome for the years 1996 to 2017 is here presented. This long-term record is obtained from ground-based direct sun measurements with a MkIV Brewer spectrophotometer (serial number #067) and further reprocessed using a novel algorithm. Compared to the original Brewer algorithm, the new method includes updated NO2 absorption cross sections and Rayleigh scattering coefficients, and it accounts for additional atmospheric compounds and instrumental artefacts, such as the spectral transmittance of the filters, the alignment of the wavelength scale, and internal temperature. Moreover, long-term changes in the Brewer radiometric sensitivity are tracked using statistical methods for in-field calibration. The resulting series presents only a few (about 30) periods with missing data longer than 1 week and features NO2 retrievals for more than 6100 d, covering nearly 80 % of the considered 20-year period. The high quality of the data is demonstrated by two independent comparisons. In the first intensive campaign, Brewer #067 is compared against another Brewer (#066), recently calibrated at the Izaña Atmospheric Observatory through the Langley method and there compared to reference instrumentation from the Network for the Detection of Atmospheric Composition Change (NDACC). Data from this campaign show a highly significant Pearson's correlation coefficient of 0.90 between the two series of slant column densities (SCDs), slope 0.98 and offset 0.05 DU (Dobson units;1.3×1015 molec.cm-2). The average bias between the vertical column densities is 0.03 DU (8.1×1014 molec.cm-2), well within the combined uncertainty of both instruments. Brewer #067 is also independently compared with new-generation instrumentation, a co-located Pandora spectrometer (#117), over a 1-year-long period (2016–2017) at Sapienza University of Rome, showing linear correlation indices above 0.96 between slant column densities, slope of 0.97, and offset of 0.02 DU (5.4×1014 molec.cm-2). The average bias between vertical column densities is negligible (-0.002 DU or -5.4×1013 molec.cm-2). This, incidentally, represents the first intercomparison of NO2 retrievals between a MkIV Brewer and a Pandora instrument. Owing to its accuracy and length, the Brewer data set collected in Rome can be useful for satellite calibration/validation exercises, comparison with photochemical models, and better aerosol optical depth estimates (NO2 optical depth climatology). In addition, it can be employed to identify long-term trends in NO2 column densities in a metropolitan environment, over two decades witnessing important changes in environmental policies, emission loads and composition, and the effect of a worldwide economic recession, to offer just a few examples. The method can be replicated on the more than 80 MkIV spectrophotometers operating worldwide in the frame of the international Brewer network. The NO2 data set described in this paper can be freely accessed at 10.5281/zenodo.4715219 .

2.
Sci Total Environ ; 757: 143757, 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-939256

ABSTRACT

A significantly stronger impact in mortality and morbidity by COVID-19 has been observed in the northern Italian regions compared to the southern ones. The reasons of this geographical pattern might involve several concurrent factors. The main objective of this work is to investigate whether any correlations exist between the spatial distribution of COVID-19 cases and deaths in the different Italian regions and the amount of solar ultraviolet (UV) radiation at the Earth's surface. To this purpose, in this environmental ecological study a mixed-effect exponential regression was built to explain the incidence of COVID-19 based on the environmental conditions, and demographic and pathophysiologic factors. Observations and estimates of the cumulative solar UV exposure have been included to quantify the amount of radiation available e.g., for pre-vitamin D3 synthesis or SARS-CoV-2 inactivation by sunlight. The analysis shows a significant correlation (p-value <5 × 10-2) between the response variables (death percentage, incidence of infections and positive tests) and biologically effective solar UV radiation, residents in nursing homes per inhabitant (NHR), air temperature, death percentage due to the most frequent comorbidities. Among all factors, the amount of solar UV radiation is the variable contributing the most to the observed correlation, explaining up to 83.2% of the variance of the COVID-19 affected cases per population. While the statistical outcomes of the study do not directly entail a specific cause-effect relationship, our results are consistent with the hypothesis that solar UV radiation impacted on the development of the infection and on its complications, e.g. through the effect of vitamin D on the immune system or virus inactivation by sunlight. The analytical framework used in this study, based on commonly available data, can be easily replicated in other countries and geographical domains to identify possible correlations between exposure to solar UV radiation and the spread of the pandemic.


Subject(s)
COVID-19 , Ultraviolet Rays , Humans , Italy/epidemiology , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL